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Abstract. Following ideas of Gull, S W n g  and MacKay. we develop and explore a statistical- 
mechanics framework through which one may assign values to Ihe parameters of a model far a 
‘rule‘ (instanced, here, by the noisy linear percepkon). on the basis of data instancing the rule. 
The ‘evidence’ which the data offers in suppofi of a given assignment, is l i m e d  to the free 
energy of a system with quenched variables (the data): the most probable (w) assignments of 
parameters are those which minimize this free-energy; hacking the he-energy minimum may 
lead to ‘phase transitions’ in the preferred assignments. We explore the atent to which the MAP 
assignments lead to optimal performance. 

1. Introduction 

The task of parameterizing a model of a set of data is one of the recurring problems 
of science. In general terms the problem is as follows. We are given a set of data 
D comprising p members; each member instances an unknown rule (or mapping) Ro 
connecting the components of the member (the ‘input’ and the ‘output’, in the language of 
neural networks). We attempt to model Ro by some rule R({w)) ,  specified by a parameter 
set ( w )  having N members. Prior convictions (hypotheses) about the rule Ro are expressed, 
defacto, in the form chosen for 72, and in the values assigned to a further set of parameters 
( p ) ,  characterizing (for example) constraints on the set [ w ) .  The modelling process has 
many facets, both practical and conceptual; it may be addressed from a wide range of 
perspectives and with a range of techniques. Here, we focus on one particular issue-the 
strategy underlying the assignment of what we shall call the hypothesis parameters [P I ;  we 
do so in a context-that of sufficiently large N and p-where the methods of statistical 
mechanics are appropriate. Although the large-N assumption distances the analysis from 
the more usual modelling tasks, it is relevant to neural-network modelling (see e.g. [I]) 
and, in concept at least, to the general task of image restoration (see e.g. [2]). 

Tbo recent bodies of work provide the context and motivation for this study. 
First, building on work of Gull [3] and Skilling [4], MacKay [S, 61 has developed and 

explored a Bayesian framework in which hypothesis parameters [ p }  are assigned values 
such as to maximize the conditional probability P(DI{p)), which, following these authors, 
we shall refer to as the ‘evidence’ for the parameters. The rationale for the name lies 
in the fact that, in the absence of prior information on the hypothesis parameters, the 
evidence P(’D,l[p)) provides a direct measure of the conditional probability .P( [P)ID) .  The 
parameters which maximize the evidence are thus ‘optimal’ in the sense that they represent 
the single most likely (maximum aposteriori, MAP) values given the data. 

Second, in a contribution to a substantial programme devoted to the statistical mechanics 
of learning, Krogh and Hertz [7] have explored the particular case in which the rule 
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connecting input and output is linear, the data is corrupted with Gaussian noise, and the 
parameters ( w }  of the model rule are drawn from a Gaussianprior. For this case (the ‘noisy 
linear perceptron with weight decay’, to be referred to as NLP) they identify a line through 
the two-dimensional space of hypothesis parameters, characterizing assignments that are 
‘optimal’ in the senset that they minimize the typical value of the error with which the 
model will predict the the output associated with a new input (the generaliration error). 

In this paper we develop each of these strands, and explore their interconnections. We 
calculate the evidence for the NLP-or, more precisely its logarithm, averaged over an 
ensemble of data sets 2); it plays the role of the free energy of a many-body system with 
quenched random variables (the data). While this function has been calculated by others 
[ 101 within the replica formulation of learning theory [9], the result given here, based on 
the methods of Krogh and Hertz 171, is explicit and transparent, allowing us to explore the 
role of the evidence as a predictor of ‘optimal’ parameters. The notion of the ‘evidence’ as 
a free energy has also been noted elsewhere [ll]; here we point out that, in consequence, 
one may naturally expect to find different ‘phases’ of hypothesis space, and we show that 
the NLP (in the limit of zero weight decay) provides a simple and explicit example of a 
phase transition separating a ‘phase’ in which a hypothesis parameter is sharply determined 
by the data, from a phase in which it is undetermined. We also explore the relationship 
between the evidence-based assignments of ‘optimal‘ parameters and assignments based on 
other performance measures such as the generalization error. The results suggest that the 
evidence provides an effective guide to performance only if the model is at least potentially 
well matched to the underlying reality. 

A D Bmce and D S a d  

2. Calculation: evidence and performance measures 

We suppose that OUT data z) comprises p input-output pairs (x’, y’)  where the vector x’ 
has elements xj” ( j  = 1 . . . N ) .  We suppose that the input-output relation R” is linear, and 
subject to corruption by a Gaussian noise: 

where w,” ( j  = 1 . . . N )  are the elements of a rule vector w’. and is a random Gaussian- 
noise variable of variance U .  We suppose that the elements xj” of the inputs are also 
Gaussian random variables of variance ux. 

We proceed to examine the effectiveness of ‘models’ R of the data-generating process 
which take the rule to be linear, parameterized by a rule vector w ,  

l N  
R(x’) = - wjx; VfR /=I  

with elements ( w )  that are Gaussian diseibuted with variance l/2y , and which take the 
corruption process to be Gaussian with variance 1/2p . The quantities p and y constitute 
the ‘hypothesis parameters’. 

t The word ‘optimal’ is used with a wide range of meanings in the relevanl lileraylre. Thus, for example, Walkin 
[SI considers ‘optimal Iwning’. meaning the behaviour of a network all of whose parameters an chosen so as lo 
minimize the generalization ermr. 
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The hypothesis about the rule itself is expressed through the conditional probability 

p(wly)  = (L) ' ' " ' e -~Zr~~ .  H (2.3) 

(prior): 

The hypothesis about the corruption process is expressed through the further conditional 
probability (likelihood): 

Appealing to Bayes theorem [12], these two conditional probabilities may be combined to 
give a conditional probability (the posterior) for the model rule, parameterized by the rule 
vector w: 

The normalizing factor appearing in this relation, 

P ( W ,  B)  = P('DIw, B)P(wlv) 
w 

constitutes the 'evidence' which the data provides for the assignment of the model 
parameters [5, 61. In the present context the 'sum' over rule space which it entails is 
implemented by an integral over the elements wj of the model rule: 

+ j 
Writing the expression for the evidence explicitly one obtains 

where 

(2.7) 

while rj = w; - wj and 

Performing the Gaussian integrals over rule space we obtain 

At this point there is a choice to be made. One may proceed to consider the 'optimal' 
parameters which follow from maximizing the evidence for a specijk realization of the data 
2). deferring averages over 2). Alternatively (the route we shall actually take here) one 
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may proceed directly to consider the ensemble average of the log-evidence, which may be 
thought of as defining a freeenergy density o f  a system with ‘quenched‘ data variables: 

A D Bruce and D Sand 

(2. I I )  

The quenched average ((.)) extends over the ensemble of input data, and noise. The 
averaging may be done by adapting the analysis of Hertz eta1 [I31 to show that 

where 
( (Ajk))  = (zgU$’G(h,a)8jk (2.12) 

1 - a  - A + J(A+ a - l)z+ 4b 
2A 

G& a) = 

with a = p / N  and 

(2.13) 

(2.14) 

Using this result in conjunction with (2.11) and (2.10) we then obtain 

A’ ‘1 
(2.15) 

x ( a 
f = (7 - B, (I  - AG(A, a)) + - ~ng- 1n(2zu~)) - - CU‘ G(A’, a) - - 

where the last term comes from solving a differential equation for ((IndetA)). The new 
parameters 7 and are scaled versions of the original hypothesis parameters: 

- - y =2u;y  g=2& 
while 

1 
“ - N  U* = - -y(w,”)’  (2.16) 

gives the variance of the elements of the true rule vector WO. 
Equation (2.15) completes the calculation of the evidence measure; we shall explore its 

StrUCtUTe in the following section, with particular emphasis on the MAP parameter estimates 
defined by its extrema. We will also be concerned with the implications of these MAP 
assignments for performance measures, which we proceed to identify. 

The most widely used performance measure is the generalization error cg defined by 

U*ES = (( [(720(3) - R(r))]’)). (2.17) 

The inner average (.) extends over the ensemble of model rules for given data 
(characterized by the distribution (2.5)); the outer average ((.)) extends over the quenched 
variables (the data and the noise). Recognising that (cf equations (2.8)-(2.10)) 

we may write 

(2.18) 
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which may be evaluated using (2.12) to give 

where G’(h, (U) is the derivative of the function G with respect to h, and 

U 2  

u,2u: 
U=- 

(2.19) 

(2.20) 

provides a measure of the ratio of noise to signal associated with a typical element of the 
input vector. Equation (2.19) recovers a result of Krogh and Hertz [7]. 

The generalization error measures only one aspect of the effectiveness of the modelling 
procedure. It gives a measure of the typical (mean-square) difference between the output of 
the mean model rule for given fixed data and the output of the true rule, for a typical novel 
input. A small value of E ,  implies that the model makes accurate predictions. The variance 
of the model output for given fixed data and test input provides the ingredients for a second 
performance measure. It is desirable that the confidence limits on the model output, implied 
by this variance, should correspond as closely as possible to the true error, whose average 
is E ~ .  With this motivation we define a measure of the generalization consistency 

(2.21) 

A small value of 8, implies that the model predicts its own errors accurately. In the present 
context we find that 

2 
UZ8, = (( ([R(z) - (R(z))lZ) )) - 0 %. 

so that 

While appropriate for our own purposes, (2.17) and (2.21) do not exhaust the possible 
forms of performance measure. We note two others in particular. First, Hansen [14] defines 
a ‘generalization error’ as a typical (mean-square) difference between mean model rule 
output and corrupted rule output. This quantity is an amalgam of E ,  and 8, defined here. 
Second, Levin et a1 [I51 define a ‘prediction error’ as a measure of the likelihood one 
would assign to an observed novel corrupted output, given the rule distribution implied by 
the data. It is straightforward to show that this quantity is simply related to the derivative 
of the log-evidence with respect to the number p of members of the defining data set. 

3. Analysis and discussion 

In this section we explore the implications of using the evidence extrema (the minima of the 
free energy f ,  equation (2.15)) to set the values of the hypotheses parameters ,3 and y- 
in particular, the consequences for the performance measures E ,  and 8, (equations (2.19). 
(2.22)). We divide our discussion into two parts. First we examine the y + 0 limit, which 
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provides a simple illustration of a phase transition in the space of hypothesis parameters. 
The y # 0 case is more complex, but provides insights into the phenomena which may 
occur when the model is not well matched to the underlying rule. 

A D Bruce and D Saad 

3.1. A special case: t h e y  + 0 limit 

The y + 0 limit of (2.15) has to be taken with some care, since the 'weight-decay' term in 
the cost function (2.9) is needed to regularize the integral in (2.8). when p N (i.e. when 
a < 1). We find 

where the unspecified function f ~ ( a )  is independent of B. The result for the regime a > 1 
(where the regularizer is unnecessary) can be found in the work of Levin er al [IS]. In 
the regime a < 1 the leading contributions to the free energy are independent of in this 
regime the data provides no 'evidence' to guide the choice of this hypothesis parameter. 
In the regime o( > 1 the free energy is minimized (the evidence maximized) by the choice 
p = 1. The point a = I locates a phase transition between these two regions of hypothesis 
space. The approach to the phase transition as ff + 1+ is signalled by a divergence of the 
'susceptibility' 

- 

and by fluctuations in the optimal value of the hypothesis parameter located by the extrema 
of the D-dependent evidence (2.10), which we shall report on elsewhere. The singular 
behaviour at a = 1 also manifests itself in the performance measures. From (2.19) we 
obtain, in accord with Krogh and Hertz, 

while from (2.22) we find 

(3.3) 

(3.4) 

These results show that, without equivocation in this case, the evidence provides a good 
guide to parameter choice. In the regime a > 1 the data (through the evidence) identifies 
the value 3 = 1 which optimizes (sets to zero) the consistency measure 8,. In the regime 
a < 1 both performance measures cg and 6, are indifferent to the choice of mirroring 
the behaviour of the evidence. This behaviour reflects the fact that, in this regime, the data 
is insufficient to anchor the model rule in the vicinity of the true rule: the consequent large 
fluctuations in rule space are controlled predominantly by the prior on the weights. 
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3.2. The general case: y # 0 

It is straightforward to show analytically that the free energy (2.15) has a turning point in 
the 7.7 plane at p = s = 1. Numerical studies indicate (we have not proved it generally) 
- that this turning point is invariably aglobal minimum. This is to be expected. The condition 
p = 1 corresponds to a prior assignment (p  = l/2uz) which accords to the observed data 
the appropriate degree of confidence, given the magnitude of the noise; the condition j7 = 1 
(y = 2 ~ : )  tunes the typical member of the rule parameter set (U)) to the typical size of the 
elements of the true rule vector W O .  

The generalization error cg (2.19) is actually sensitive only to the ratio of the two 
hypothesis parameters, through its dependence on ,I = up/s. It is easily shown that eg is 
minimal along the line p = 7, where ,I = W .  By inspection of (2.19) and (2.22) one sees 
that, on this line, SE vanishes (is optimized) with the choices = 1. Thus the evidence-based 
assignments optimize the performance measures. This is also eminently reasonable. Indeed, 
quite generally we must expect that, if the hypothesis is well-matched to the world (the 
hypothesis space contains the ‘truth’ about the data), the evidence framework will locate 
the ‘truth’ and will presumably optimize all reasonable performance measures. 

It is, however, of rather more interest to know how the evidence framework functions 
when the hypothesis is not well-matched to the world. This situation is realized in a 
primitive way in the present framework when one of the hypothesis parameters is clamped 
at a sub-optimal value. We identify two potentially generic features of this situation. 

First, optimizing the evidence ovet an inadequate hypothesis space does not guarantee 
optimal performance measures. Consider, for example, the evidence-optimized parameter 
j3,(n, defined by the solution to the equation af/aFlF = 0. It is easy to show from (2.15) 
that 

- 

j3, =p+ (1 -m + G)(G+AG’) 
- 

(3.5) 

This form captures the ‘truth’ (s = 1) if 7 = 0, when there is no bias at all from the 
weight decay term; if p = 1, when there is no false bias from the weight decay term; and 
if 01 + CO or p + 0, when the data contains enough information about the corrupting 
noise to overwhelm any bias from the weight decay term. In general, however, s, depends 
upon the value assigned to 7. Significantly (as one finds, already, if one examines the 
O(y )  corrections to the leading behaviour recorded in (3.1), (3.3) and (3.4)) the assignment 
,9 = sf@) does not optimize the performance measures cg and 8,. Equation (2.19) shows 
that is optimized for a given j7 by the assignment 7 = F6 = p. The optimization of 
S, (2.22) provides a criterion for identifying a further ‘optimal’ parameter, sa. The 7- 
dependence of the three ‘optimal’ parameters is displayed in figure 1, for the case 01 = 1.5. 
It is clear that the parameter choice producing the most ‘effective’ rule performance depends 
upon the performance measure; and the likeliest parameter values identified by the evidence 
framework provide little guidance as to which parameter assignments will best compensate 
for the deficiencies of the hypothesis space. 

The second key feature to be noted is that regions of hypozhesis space remotefrom the 
truth may have sufficient structure to support phase transitions. Figure 2 provides a simple 
example: it shows the difference A f = fl - fi between the free energies associated with two 
sub-optimal hypotheses, plotted as a function of the effective number of examples OL - = p / N .  
The two hypotheses are characterized by values p = 0.1, F = 1 and p = 0.1, ,3 = 1.5, 
respectively. Evidently the first hypothesis is to be ‘preferred‘ (in the sense of being more 
likely) for large enough a, where the data is sufficient to overwhelm the false bias resulting 

- 
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Figure 1. The ‘optimal‘ values of the hypothesis 
parameter 7 (for U = 1.5). as a function of 
the hypothesis parameter 7, identified on the basis 
of three different criIeM(a) minimization of the 
free energy f (giving TI); (b)  mininizalion of 
the generalization emx c, (giving F 6 )  and (c )  
minimizalion of Le magnitode of the consistency 
measure 6, (giving Fa). The lhree resulis coincide 
only aI y = 1. 

2 -05 Figure 2 The difference between the free energies fi 
and fi associated with two ‘hypotheses’. characterized 
by assignments 7= 0.1.8 = I and 7 = 0.1.6 = 1.5 
respectively. The point 010 2 1.34 locates a boundary 
between a ‘phase’ in which lhe fim hypothesis is 
favoured (U > WO) and one in which the second 

.LO 
q \ 

-15 

D hypothesis is favoured. 

from the assignment of the weight decay parameter; but the second hypothesis is favoured 
at lower values of a. The crossing of the evidence surfaces occurring at intermediate a 
values locates a transition between sectors, or ‘phases’, of parameter space favouring the 
two hypotheses. 

4. Summary 

In this paper we have explored the general issue of hypothesis-parameter assignment, and its 
consequences for performance measures. in the context of the noisy linear perceptron. We 
have seen that evidence-based MAP assignments of hypothesis parameters do not, in general, 
optimize performance measures: the mod likely parameter values, given a less-than-perfect 
prior will rarely be the m s t  effective. We have also seen two instances of phase transitions 
in the space of hypothesis parameters, driven by a variation of the number of members 
of the data set. We anticipate that such occurrences may prove to be a general feature of 
hypothesis-parameter assignment, reflecting the shift in the relative influence of model rule 
error (‘energy’) and model rule flexibility (‘entropy’), with the growth of the information 
content of the data set. 
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